WASTELOAD ANALYSIS [WLA] Addendum: Statement of Basis SUMMARY | Discharging Facility: UPDES No: | Pacificorp-De | eer Creek N | line | | | |--|---------------|-------------------------|------------|----------------------|-----------------| | Current Flow: | 5.00 M | IGD D | esign Flov | N | | | Design Flow | - 5.00 M | | | • | | | 2001g. 1 1 10 10 | | | | | | | | | | | | | | Receiving Water: | Deer Creek - | | on Creek | | | | Stream Classification: | 1C, 2B, 3 | - | . 0 1\ | F-4:4- | | | Stream Flows [cfs]: | | ummer (July | | Estimate | | | | | all (Oct-Dec | • | Estimate | | | | | Vinter (Jan-N | | Estimate
Estimate | 9 | | | | pring (Apr-Ja
verage | une) | Estimate | | | Stream TDS Values: | | ummer (July | -Sent) | Water Quality Data | | | Stream TDS values. | | all (Oct-Dec | | Water Quality Data | | | | | Vinter (Jan-N | | Water Quality Data | | | | | pring (Apr-J | | Water Quality Data | | | | | F 5 (1-1 - | | , | | | Effluent Limits: | | | | WQ Standard: | | | Flow, MGD: | 5.00 M | 1GD D | esign Flo | W | | | BOD, mg/l: | 25.0 S | ummer | 5.0 | Indicator | | | Dissolved Oxygen, mg/ | 1 5.0 S | ummer | | 30 Day Average | | | TNH3, Chronic, mg/l: | 3.8 S | ummer | | Function of pH and T | Temperature | | TDS, mg/l: | 1200.1 S | ummer | 1200.0 | | | | | | | | | | | Madalius Desentatore | | | | | | | Modeling Parameters Acute River Width: | | lume Model | Head | | | | Chronic River Width: | | lume Model | | | | | Chionic River voldur. | 100.0% F | iuille Model | USGU | | | | | | | | | | | Antidegradation Revi | ew | | | | | | Antidegradation Level I | | quired | | | | | <u>.</u> | | • | | | Date: 11/8/2012 | | | | | | | | | | | | | | | | Dame it Maletan | | | | | | | Permit Writer: | | 7 | ./// | | | | WLA by: | 7 | /ail | UX. | UMM | 11/8/12 | | WILM Dy. | | | 0. | 1. | | | WQM Sec. Approval: | | | | | | | | 1 /a | | | | | | TMDI Sec Approval | | | | | | WASTELOAD ANALYSIS [WLA] Addendum: Statement of Basis 8-Nov-12 4:00 PM Facilities: Pacificorp-Deer Creek Mine **Deer Creek -> Huntington Creek** UPDES No: UT-0023604 #### I. Introduction Discharging to: Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses [R317-2-8, UAC]. Projected concentrations are compared to numeric water quality standards to determine acceptability. The anti-degradation policy and procedures are also considered. The primary in-stream parameters of concern may include metals (as a function of hardness), total dissolved solids (TDS), total residual chlorine (TRC), un-ionized ammonia (as a function of pH and temperature, measured and evaluated interms of total ammonia), and dissolved oxygen. Mathematical water quality modeling is employed to determine stream quality response to point source discharges. Models aid in the effort of anticipating stream quality at future effluent flows at critical environmental conditions (e.g., low stream flow, high temperature, high pH, etc). The numeric criteria in this wasteload analysis may always be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality. #### II. Receiving Water and Stream Classification Deer Creek -> Huntington Creek: 1C, 2B, 3A, 4 Antidegradation Review: Antidegradation Level II Review is Required #### III. Numeric Stream Standards for Protection of Aquatic Wildlife Total Ammonia (TNH3) Varies as a function of Temperature and pH Rebound. See Water Quality Standards Chronic Total Residual Chlorine (TRC) 0.011 mg/l (4 Day Average) 0.019 mg/l (1 Hour Average) Chronic Dissolved Oxygen (DO) 6.50 mg/l (30 Day Average) 5.00 mg/l (7Day Average) 4.00 mg/l (1 Day Average Maximum Total Dissolved Solids 1200.0 mg/l #### Acute and Chronic Heavy Metals (Dissolved) | | 4 Day Average (Chror | nic) Standard | 1 Hour Average (Acute) Standard | | | | |--------------|---------------------------------------|----------------|---------------------------------|------|-----------------|--| | Parameter | Concentration | Load* | Concentration | | Load* | | | Aluminum | 87.00 ug/l** | 3.627 lbs/day | 750.00 | ug/l | 31.269 lbs/day | | | Arsenic | — — — — — — — — — — — — — — — — — — — | 7.921 lbs/day | 340.00 | ug/l | 14.175 lbs/day | | | Cadmium | • | 0.025 lbs/day | 6.52 | ug/l | 0.272 lbs/day | | | Chromium III | • | 8.835 lbs/day | 4433.71 | ug/l | 184.849 lbs/day | | | ChromiumVI | _ | 0.459 lbs/day | 16.00 | ug/l | 0.667 lbs/day | | | Copper | 23.85 ug/l | 0.994 lbs/day | 39.41 | ug/l | 1.643 lbs/day | | | Iron | | | 1000.00 | ug/l | 41.692 lbs/day | | | Lead | 12.88 ug/l | 0.537 lbs/day | 330.60 | ug/l | 13.783 lbs/day | | | Mercury | 0.0120 ug/l | 0.001 lbs/day | 2.40 | ug/l | 0.100 lbs/day | | | Nickel | | 5.509 lbs/day | 1188.44 | ug/l | 49.548 lbs/day | | | Selenium | 4.60 ug/l | 0.192 lbs/day | 20.00 | ug/l | 0.834 lbs/day | | | Silver | N/A ug/l | N/A lbs/day | 25.04 | ug/l | 1.044 lbs/day | | | Zinc | 303.93 ug/l | 12.672 lbs/day | 303.93 | ug/l | 12.672 lbs/day | | ^{*} Allowed below discharge Metals Standards Based upon a Hardness of 300 mg/l as CaCO3 | Organics [Pesticides] | | | | | | |-----------------------|-------------------|------------------|---------------|--------------|---------------| | • | 4 Day Average (Cl | hronic) Standard | 1 Hour Ave | erage (Acut | e) Standard | | Parameter | Concentration | n Load* | Concentration | | Load* | | Aldrin | | | 1.500 | ug/l | 0.063 lbs/day | | Chlordane | 0.004 ug/l | 0.179 lbs/day | 1.200 | ug/l | 0.050 lbs/day | | DDT, DDE | 0.001 ug/l | 0.042 lbs/day | 0.550 | ug/l | 0.023 lbs/day | | Dieldrin | 0.002 ug/l | 0.079 lbs/day | 1.250 | ug/l | 0.052 lbs/day | | Endosulfan | 0.056 ug/l | 2.335 lbs/day | 0.110 | ug/l | 0.005 lbs/day | | Endrin | 0.002 ug/l | 0.096 lbs/day | 0.090 | ug/l | 0.004 lbs/day | | Guthion | | | 0.010 | ug/l | 0.000 lbs/day | | Heptachlor | 0.004 ug/l | 0.158 lbs/day | 0.260 | ug/l | 0.011 lbs/day | | Lindane | _ | 3.336 lbs/day | 1.000 | ug/l | 0.042 lbs/day | | Methoxychlor | | | 0.030 | ug/l | 0.001 lbs/day | | Mirex | | | 0.010 | ug/l | 0.000 lbs/day | | Parathion | | | 0.040 | ug/l | 0.002 lbs/day | | PCB's | 0.014 ug/l | 0.584 lbs/day | 2.000 | ug/l | 0.083 lbs/day | | Pentachlorophenol | 13.00 ug/l | 542.062 lbs/day | 20.000 | ug/l | 0.834 lbs/day | | Toxephene | 0.0002 ug/l | 0.008 lbs/day | 0.7300 | u g/l | 0.030 lbs/day | | | IV. Numeric Stream Standards for Protection of Agriculture
4 Day Average (Chronic) Standard | | | cute) Standard | |----------|--|-------|---------------|----------------| | | Concentration | Load* | Concentration | Load* | | Arsenic | | | 100.0 ug/l | lbs/day | | Boron | | | 750.0 ug/l | 15.63 lbs/day | | Cadmium | | | 10.0 ug/l | 0.21 lbs/day | | Chromium | 2 | | 100.0 ug/l | lbs/day | | Copper | | | 200.0 ug/l | lbs/day | ^{**}Chronic Aluminum standard applies only to waters with a pH < 7.0 and a Hardness < 50 mg/l as CaCO | Lead | 100.0 ug/l | lbs/day | |-------------|-------------|----------------| | Selenium | 50.0 ug/l | lbs/day | | TDS, Summer | 1200.0 mg/l | 25.01 tons/day | #### V. Numeric Stream Standards for Protection of Human Health (Class 1C Waters) | 4 | Day Average (Chronic | c) Standard | 1 Hour | Average (Acut | te) Standard | |------------------------|----------------------|-------------|---------------|---------------|----------------| | Metals | Concentration | Load* | Concentration | on | Load* | | Arsenic | | | 50.0 | ug/l | 2.085 lbs/day | | Barium | | | 1000.0 | ug/l | 41.697 lbs/day | | Cadmium | | | 10.0 | ug/l | 0.417 lbs/day | | Chromium | | | 50.0 | ug/l | 2.085 lbs/day | | Lead | | | 50.0 | ug/l | 2.085 lbs/day | | Mercury | | | 2.0 | ug/l | 0.083 lbs/day | | Selenium | | | 10.0 | ug/l | 0.417 lbs/day | | Silver | | | 50.0 | ug/l | 2.085 lbs/day | | Fluoride (3) | | | 1.4 | ug/l | 0.058 lbs/day | | to | | | 2.4 | ug/l | 0.100 lbs/day | | Nitrates as N | | | 10.0 | ug/l | 0.417 lbs/day | | Chlorophenoxy Herbicid | les | | | | | | 2,4-D | | | 100.0 | ug/l | 4.170 lbs/day | | 2,4,5-TP | | | 10.0 | ug/l | 0.417 lbs/day | | Endrin | | | 0.2 | ug/l | 0.008 lbs/day | | ocyclohexane (Lindane) | | | 4.0 | ug/l | 0.167 lbs/day | | Methoxychlor | | | 100.0 | ug/l | 4.170 lbs/day | | Toxaphene | | | 5.0 | ug/l | 0.208 lbs/day | #### VI. Numeric Stream Standards the Protection of Human Health from Water & Fish Consumption [Toxics] #### Maximum Conc., ug/l - Acute Standards | | Class 1 | | Class 3A, 3B | | | |---------------------------|-------------------|-----------------------------|--------------|--------|------------------------| | Toxic Organics | [2 Liters/Day for | r 70 Kg Person over 70 Yr.] | [6.5 g | for 70 | Kg Person over 70 Yr.] | | Acenaphthene | 1200.00 ug/l | 50.04 lbs/day | 2700.0 | ug/l | 112.58 lbs/day | | Acrolein | 320.00 ug/ł | - 13.34 lbs/day | 780.0 | ug/l | 32.52 lbs/day | | Acrylonitrile | 0.06 ug/l | 0.00 lbs/day | 0.7 | ug/l | 0.03 lbs/day | | Benzene | 1.20 ug/l | 0.05 lbs/day | 71.0 | ug/l | 2.96 lbs/day | | Benzidine | 0.00012 ug/l | 0.00 lbs/day | 0.0 | ug/l | 0.00 lbs/day | | Carbon tetrachloride | 0.25 ug/l | 0.01 lbs/day | 4.4 | ug/l | 0.18 lbs/day | | Chlorobenzene | 680.00 ug/l | 28.35 lbs/day | 21000.0 | ug/l | 875.64 lbs/day | | 1,2,4-Trichlorobenzene | | | | | | | Hexachlorobenzene | 0.00075 ug/l | 0.00 lbs/day | 0.0 | ug/l | 0.00 lbs/day | | 1,2-Dichloroethane | 0.38 ug/l | 0.02 lbs/day | 99.0 | ug/l | 4.13 lbs/day | | 1,1,1-Trichloroethane | | | | | | | Hexachloroethane | 1.90 ug/i | 0.08 lbs/day | 8.9 | ug/l | 0.37 lbs/day | | 1,1-Dichloroethane | | | | | | | 1,1,2-Trichloroethane | 0.61 ug/l | 0.03 lbs/day | 42.0 | ug/l | 1.75 lbs/day | | 1,1,2,2-Tetrachloroethai | 0.17 ug/l | 0.01 lbs/day | 11.0 | ug/l | 0.46 lbs/day | | Chloroethane | _ | - | 0.0 | ug/l | 0.00 lbs/day | | Bis(2-chloroethyl) ether | 0.03 ug/l | 0.00 lbs/day | | ug/l | 0.06 lbs/day | | 2-Chloroethyl vinyl ether | 0.00 ug/l | 0.00 lbs/day | | ug/l | 0.00 lbs/day | | , , | J | • | | _ | • | | | | | 1000.0 | 170.20 lba/day | |--------------------------|---------------|------------------|---------------|------------------| | 2-Chloronaphthalene | 1700.00 ug/l | 70.88 lbs/day | 4300.0 ug/l | 179.30 lbs/day | | 2,4,6-Trichlorophenol | 2.10 ug/l | 0.09 lbs/day | 6.5 ug/l | 0.27 lbs/day | | p-Chloro-m-cresol | | | 0.0 ug/l | 0.00 lbs/day | | Chloroform (HM) | 5.70 ug/l | 0.24 lbs/day | 470.0 ug/l | 19.60 lbs/day | | 2-Chlorophenol | 120.00 ug/l | 5.00 lbs/day | 400.0 ug/l | 16.68 lbs/day | | 1,2-Dichlorobenzene | 2700.00 ug/l | 112.58 lbs/day | 17000.0 ug/l | 708.85 lbs/day | | 1,3-Dichlorobenzene | 400.00 ug/l | 16.68 lbs/day | 2600.0 ug/l | 108.41 lbs/day | | 1,4-Dichlorobenzene | 400.00 ug/l | 16.68 lbs/day | 2600.0 ug/l | 108.41 lbs/day | | 3,3'-Dichlorobenzidine | 0.04 ug/l | 0.00 lbs/day | 0.1 ug/l | 0.00 lbs/day | | 1,1-Dichloroethylene | 0.06 ug/l | 0.00 lbs/day | " 3.2 ug/l | 0.13 lbs/day | | 1,2-trans-Dichloroethyle | 700.00 ug/l | 29.19 lbs/day | 0.0 ug/l | 0.00 lbs/day | | 2,4-Dichlorophenol | 93.00 ug/l | 3.88 lbs/day | 790.0 ug/l | 32.94 lbs/day | | 1,2-Dichloropropane | 0.52 ug/l | 0.02 lbs/day | 39.0 ug/l | 1.63 lbs/day | | 1,3-Dichloropropylene | 10.00 ug/l | 0.42 lbs/day | 1700.0 ug/l | 70.88 lbs/day | | 2,4-Dimethylphenol | 540.00 ug/l | 22.52 lbs/day | 2300.0 ug/l | 95.90 lbs/day | | 2,4-Dinitrotoluene | 0.11 ug/l | 0.00 lbs/day | 9.1 ug/l | 0.38 lbs/day | | 2,6-Dinitrotoluene | 0.00 ug/l | 0.00 lbs/day | 0.0 ug/l | 0.00 lbs/day | | 1,2-Diphenylhydrazine | 0.04 ug/l | 0.00 lbs/day | 0.5 ug/l | 0.02 lbs/day | | Ethylbenzene | 3100.00 ug/l | 129.26 lbs/day | 29000.0 ug/l | 1209.21 lbs/day | | Fluoranthene | 300.00 ug/l | 12.51 lbs/day | 370.0 ug/l | 15.43 lbs/day | | 4-Chlorophenyl phenyl et | her | | | | | 4-Bromophenyl phenyl et | her | | | -000 50 H / L | | Bis(2-chloroisopropyl) e | 1400.00 ug/l | 58.38 lbs/day | 170000.0 ug/l | 7088.50 lbs/day | | Bis(2-chloroethoxy) met | 0.00 ug/l | 0.00 lbs/day | 0.0 ug/l | 0.00 lbs/day | | Methylene chloride (HM | 4.70 ug/l | 0.20 lbs/day | 1600.0 ug/l | 66.72 lbs/day | | Methyl chloride (HM) | 0.00 ug/l | 0.00 lbs/day | 0.0 ug/l | 0.00 lbs/day | | Methyl bromide (HM) | 0.00 ug/l | 0.00 lbs/day | 0.0 ug/l | 0.00 lbs/day | | Bromoform (HM) | 4.30 ug/l | 0.18 lbs/day | 360.0 ug/l | 15.01 lbs/day | | Dichlorobromomethane | 0.27 ug/l | 0.01 lbs/day | 22.0 ug/l | 0.92 lbs/day | | Chlorodibromomethane | 0.41 ug/l | 0.02 lbs/day | 34.0 ug/l | 1.42 lbs/day | | Hexachlorobutadiene(c) | 0.44 ug/l | 0.02 lbs/day | 50.0 ug/l | 2.08 lbs/day | | Hexachlorocyclopentadi | 240.00 ug/l | 10.01 lbs/day | 17000.0 ug/l | 708.85 lbs/day | | Isophorone | 8.40 ug/l | 0.35 lbs/day | 600.0 ug/l | 25.02 lbs/day | | Naphthalene | | | | | | Nitrobenzene | 17.00 ug/l | 0.71 lbs/day | 1900.0 ug/l | 79.22 lbs/day | | 2-Nitrophenol | 0.00 ug/l | 0.00 lbs/day | 0.0 ug/l | 0.00 lbs/day | | 4-Nitrophenol | 0.00 ug/l | 0.00 lbs/day | 0.0 ug/l | 0.00 lbs/day | | 2,4-Dinitrophenol | 70.00 ug/l | 2.92 lbs/day | 14000.0 ug/l | 583.76 lbs/day | | 4,6-Dinitro-o-cresol | 13.00 ug/l | 0.54 lbs/day | 765.0 ug/l | 31.90 lbs/day | | N-Nitrosodimethylamine | 0.00069 ug/l | 0.00 lbs/day | 8.1 ug/l | 0.34 lbs/day | | N-Nitrosodiphenylamine | 5.00 ug/l | 0.21 lbs/day | 16.0 ug/l | 0.67 lbs/day | | N-Nitrosodi-n-propylami | 0.01 ug/l | 0.00 lbs/day | 1.4 ug/l | 0.06 lbs/day | | Pentachlorophenol | 0.28 ug/l | 0.01 lbs/day | 8.2 ug/l | 0.34 lbs/day | | Phenol | 2.10E+04 ug/l | 8.76E+02 lbs/day | 4.6E+06 ug/l | 1.92E+05 lbs/day | | Bis(2-ethylhexyl)phthala | 1.80 ug/l | 0.08 lbs/day | 5.9 ug/l | 0.25 lbs/day | | Butyl benzyl phthalate | 3000.00 ug/l | 125.09 lbs/day | 5200.0 ug/l | 216.82 lbs/day | | Di-n-butyl phthalate | 2700.00 ug/l | 112.58 lbs/day | 12000.0 ug/l | 500.36 lbs/day | | Di-n-octyl phthlate | 5 | | | | | Diethyl phthalate | 23000.00 ug/l | 959.03 lbs/day | 120000.0 ug/l | 5003.64 lbs/day | | Dimethyl phthlate | 3.13E+05 ug/l | 1.31E+04 lbs/day | 2.9E+06 ug/l | 1.21E+05 lbs/day | | Benzo(a)anthracene (P/ | 0.0028 ug/l | 0.00 lbs/day | 0.0 ug/l | 0.00 lbs/day | | - 3 (-) | 3 | _ | | | | Benzo(a)pyrene (PAH) | 0.0028 ug/l | 0.00 lbs/day | 0.0 | ug/l | 0.00 lbs/day | |-------------------------|---------------------------|------------------------------|----------|------|-----------------| | Benzo(b)fluoranthene (F | 0.0028 ug/l | 0.00 lbs/day | 0.0 | ug/l | 0.00 lbs/day | | Benzo(k)fluoranthene (F | 0.0028 ug/l | 0.00 lbs/day | 0.0 | ug/l | 0.00 lbs/day | | Chrysene (PAH) | 0.0028 ug/l | 0.00 lbs/day | | ug/l | 0.00 lbs/day | | Acenaphthylene (PAH) | | | | | • | | Anthracene (PAH) | 9600.00 ug/l | 400.29 lbs/day | 0.0 | ug/l | 0.00 lbs/day | | Dibenzo(a,h)anthracene | 0.0028 ug/l | 0.00 lbs/day | | ug/l | 0.00 lbs/day | | Indeno(1,2,3-cd)pyrene | 0.0028 ug/l | 0.00 lbs/day | | ug/l | 0.00 lbs/day | | Pyrene (PAH) | 960.00 ug/l | 40.03 lbs/day | 11000.0 | _ | 458.67 lbs/day | | Tetrachloroethylene | 0.80 ug/l | 0.03 lbs/day | 8.9 | _ | 0.37 lbs/day | | Toluene | 6800.00 ug/l | 283.54 lbs/day | 200000.0 | - | 8339.41 lbs/day | | Trichloroethylene | 2.70 ug/l | 0.11 lbs/day | 81.0 | _ | 3.38 lbs/day | | Vinyl chloride | 2.00 ug/l | 0.08 lbs/day | 525.0 | _ | 21.89 lbs/day | | • | · · | , | 0.0 | 3 | 0.00 lbs/day | | Pesticides | | | 0.0 | | 0.00 lbs/day | | Aldrin | 0.0001 ug/l | 0.00 lbs/day | 0.0 | ug/l | 0.00 lbs/day | | Dieldrin | 0.0001 ug/l | 0.00 lbs/day | 0.0 | ug/l | 0.00 lbs/day | | Chlordane | 0.0006 ug/l | 0.00 lbs/day | 0.0 | | 0.00 lbs/day | | 4,4'-DDT | 0.0006 ug/l | 0.00 lbs/day | 0.0 | ug/l | 0.00 lbs/day | | 4,4'-DDE | 0.0006 ug/l | 0.00 lbs/day | | ug/l | 0.00 lbs/day | | 4,4'-DDD | 0.0008 ug/l | 0.00 lbs/day | | ug/l | 0.00 lbs/day | | alpha-Endosulfan | 0.9300 ug/l | 0.04 lbs/day | 2.0 | | 0.08 lbs/day | | beta-Endosulfan | 0.9300 ug/l | 0.04 lbs/day | 2.0 | ug/l | 0.08 lbs/day | | Endosulfan sulfate | 0.9300 ug/l | 0.04 lbs/day | 2.0 | _ | 0.08 lbs/day | | Endrin | 0.7600 ug/l | 0.03 lbs/day | 0.8 | ug/l | 0.03 lbs/day | | Endrin aldehyde | 0.7600 ug/l | 0.03 lbs/day | 0.8 | | · · | | Heptachlor | 0.0002 ug/l | 0.00 lbs/day | 0.0 | - | 0.03 lbs/day | | Heptachlor epoxide | 0.0002 ug/i | 0.00 lbs/day | 0.0 | ug/l | 0.00 lbs/day | | rieptacilioi epoxide | | | | | | | PCB's | | | | | | | PCB 1242 (Arochlor 124 | 0.000044 ug/l | 0.00 lbs/day | 0.0 | ua/l | 0.00 lbs/day | | PCB-1254 (Arochlor 124 | 0.000044 ug/l | 0.00 lbs/day | | ug/l | 0.00 lbs/day | | PCB-1234 (Arochlor 122 | 0.000044 ug/l | 0.00 lbs/day | 0.0 | _ | 0.00 lbs/day | | PCB-1232 (Arochlor 12) | 0.000044 ug/l | 0.00 lbs/day | 0.0 | _ | 0.00 lbs/day | | PCB-1248 (Arochlor 124 | 0.000044 ug/l | 0.00 lbs/day | 0.0 | _ | 0.00 lbs/day | | PCB-1260 (Arochlor 126 | 0.000044 ug/l | 0.00 lbs/day
0.00 lbs/day | | ug/l | 0.00 lbs/day | | PCB-1016 (Arochlor 10) | 0.000044 ug/l | 0.00 lbs/day | 0.0 | - | 0.00 lbs/day | | 1 CB-1010 (Alocillot 10 | 0.0000 44 ug/i | 0.00 ibs/day | 0.0 | ug/l | 0.00 lbs/day | | Pesticide | | | | | | | Toxaphene | 0.000750 ug/l | 0.00 | 0.0 | ug/l | 0.00 lbs/dox | | Toxaphene | 0.000750 ag/i | 0.00 | 0.0 | ug/i | 0.00 lbs/day | | Dioxin | | | | | | | Dioxin (2,3,7,8-TCDD) | 1.30E-08 ug/l | 0.00 lbs/day | 1.40E-08 | | 0.00 | | DIOXIII (2,3,7,0-1CDD) | 1.30L-00 ug/l | 0.00 lbs/day | 1.40E-00 | | 0.00 | | | | | | | | | Metals | | | | | | | Antimony | 14.0 ug/l | O EQ Ibalda | | | | | Arsenic | 50.0 ug/l | 0.58 lbs/day | 4200.00 | ua# | 470 00 lb=/d= | | Asbestos | 7.00E+06 ug/l | 2.08 lbs/day | 4300.00 | ug/I | 179.30 lbs/day | | Beryllium | 1.00L+00 ug/l | 2.92E+05 lbs/day | | | | | Cadmium | | | | | | | Caumum | | | | | | | Chromium (III) | | | 2 | | |----------------|---------------|---------------|--------------|-----------------| | Chromium (VI) | | | | | | Copper | | | | | | Cyanide | 1.30E+03 ug/l | 54.21 lbs/day | 2.2E+05 ug/l | 9173.35 lbs/day | | Lead | 700.0 ug/l | 29.19 lbs/day | | | | Mercury | • | ® | 0.15 ug/l | 0.01 lbs/day | | Nickel | | | 4600.00 ug/l | 191.81 lbs/day | | Selenium | 0.1 ug/l | 0.01 lbs/day | | | | Silver | 610.0 ug/l | 25.44 lbs/day | | | | Thallium | | | 6.30 ug/l | 0.26 lbs/day | | Zinc | | | _ | | There are additional standards that apply to this receiving water, but were not considered in this modeling/waste load allocation analysis. #### VII. Mathematical Modeling of Stream Quality Model configuration was accomplished utilizing standard modeling procedures. Data points were plotted and coefficients adjusted as required to match observed data as closely as possible. The modeling approach used in this analysis included one or a combination of the following models. - (1) The Utah River Model, Utah Division of Water Quality, 1992. Based upon STREAMDO IV (Region VIII) and Supplemental Ammonia Toxicity Models; EPA Region VIII, Sept. 1990 and QUAL2E (EPA, Athens, GA). - (2) Utah Ammonia/Chlorine Model, Utah Division of Water Quality, 1992. - (3) AMMTOX Model, University of Colorado, Center of Limnology, and EPA Region 8 - (4) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644. Coefficients used in the model were based, in part, upon the following references: - (1) Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling. Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens Georgia. EPA/600/3-85/040 June 1985. - (2) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644. #### VIII. Modeling Information The required information for the model may include the following information for both the upstream conditions at low flow and the effluent conditions: Flow, Q, (cfs or MGD) D.O. mg/l Temperature, Deg. C. Total Residual Chlorine (TRC), mg/l pH Total NH3-N, mg/l BOD5, mg/l Metals, ug/l Total Dissolved Solids (TDS), mg/l Toxic Organics of Concern, ug/l #### **Other Conditions** In addition to the upstream and effluent conditions, the models require a variety of physical and biological coefficients and other technical information. In the process of actually establishing the permit limits for an effluent, values are used based upon the available data, model calibration, literature values, site visits and best professional judgement. #### **Model Inputs** The following is upstream and discharge information that was utilized as inputs for the analysis. Dry washes are considered to have an upstream flow equal to the flow of the discharge. ### Current Upstream Information | | Stream
Critical | | | | | | | | |------------------------|--------------------|--------|--------|--------------|--------|--------|-------|---------| | | Low Flow | Temp. | рН | T-NH3 | BOD5 | DO | TRC | TDS | | | cfs | Deg. C | | mg/l as N | mg/l | mg/l | mg/l | mg/l | | Summer (Irrig. Season) | 0.0 | 20.0 | 8.2 | 0.10 | 0.50 | 9.83 | 0.00 | 220.0 | | Fall | 0.0 | 12.0 | 8.1 | 0.10 | 0.50 | | 0.00 | 220.0 | | Winter | 0.0 | 4.0 | 8.0 | 0.10 | 0.50 | | 0.00 | 220.0 | | Spring | 0.0 | 12.0 | 8.1 | 0.10 | 0.50 | *** | 0.00 | 220.0 | | Dissolved | Al | As | Cd | Crll | CrVI | Copper | Fe | Pb | | Metals | ug/l | All Seasons | 1.59* | 0.53* | 0.053* | 0.53* | 2.65* | 0.53* | 0.83* | 0.53* | | Dissolved | Hg | Ni | Se | Ag | Zn | Boron | | | | Metals | ug/l | ug/l | ug/l | u g/l | ug/l | ug/l | | | | All Seasons | 0.0000 | 0.53* | 1.06* | 0.1* | 0.053* | 10.0 | * | 1/2 MDL | | | | | | | | | | | #### **Projected Discharge Information** | Season | Flow,
MGD | Temp. | TDS
mg/l | TDS
tons/day | |--------|--------------|-------|-------------|-----------------| | Summer | 5.00000 | 17.0 | 450.00 | 9.38062 | | Fall | 5.00000 | 15.0 | | | | Winter | 5.00000 | 12.0 | | | | Spring | 5.00000 | 15.0 | | | All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality. #### IX. Effluent Limitations Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9). Other conditions used in the modeling effort coincide with the environmental conditions expected at low stream flows. ### Effluent Limitation for Flow based upon Water Quality Standards In-stream criteria of downstream segments will be met with an effluent flow maximum value as follows: | Summer 5.000 MGD 7.735 cfs Fall 5.000 MGD 7.735 cfs Winter 5.000 MGD 7.735 cfs | Season | Daily Average | | |--|--------|---------------|-----------| | Spring 5.000 MGD 7.735 cfs | Fall | 5.000 MGD | 7.735 cfs | | | Winter | 5.000 MGD | 7.735 cfs | #### Flow Requirement or Loading Requirement The calculations in this wasteload analysis utilize the maximum effluent discharge flow of 5 MGD. If the discharger is allowed to have a flow greater than 5 MGD during 7Q10 conditions, and effluent limit concentrations as indicated, then water quality standards will be violated. In order to prevent this from occuring, the permit writers must include the discharge flow limititation as indicated above; or, include loading effluent limits in the permit. ### Effluent Limitation for Whole Effluent Toxicity (WET) based upon WET Policy Effluent Toxicity will not occur in downstream segements if the values below are met. | WET Requirements | LC50 > | EOP Effluent | [Acute] | |------------------|--------|-----------------|-----------| | • | IC25 > | 100.0% Effluent | [Chronic] | ## Effluent Limitation for Biological Oxygen Demand (BOD) based upon Water Quality Standards or Regulations In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent BOD limitation as follows: | Season | Concentration | | |--------------------------|---|--| | Summer
Fall
Winter | 25.0 mg/l as BOD5
25.0 mg/l as BOD5
25.0 mg/l as BOD5 | 1042.3 lbs/day
1042.3 lbs/day
1042.3 lbs/day | | Spring | 25.0 mg/l as BOD5 | 1042.3 lbs/day | Effluent Limitation for Dissolved Oxygen (DO) based upon Water Quality Standards In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent D.O. limitation as follows: | Season | Concentration | |--------|---------------| | Summer | 5.00 | | Fall | 5.00 | | Winter | 5.00 | | Spring | 5.00 | #### Effluent Limitation for Total Ammonia based upon Water Quality Standards In-stream criteria of downstream segments for Total Ammonia will be met with an effluent limitation (expressed as Total Ammonia as N) as follows: | Sea | son | | | | | |--------|-------------------|-----|-----------|-------|---------| | | Concentration | | | | | | Summer | 4 Day Avg Chronic | 3.8 | mg/l as N | 159.7 | lbs/day | | | 1 Hour Avg. Acute | 8.8 | mg/l as N | 367.4 | lbs/day | | Fall | 4 Day Avg Chronic | 4.3 | mg/l as N | 181.3 | lbs/day | | | 1 Hour Avg Acute | 8.6 | mg/l as N | 360.2 | lbs/day | | Winter | 4 Day Avg Chronic | 4.0 | mg/l as N | 166.3 | lbs/day | | | 1 Hour Avg Acute | 8.5 | mg/l as N | 356.4 | lbs/day | | Spring | 4 Day Avg Chronic | 4.3 | mg/l as N | 0.0 | lbs/day | | | 1 Hour Avg Acute | 8.6 | mg/l as N | 0.0 | lbs/day | Acute limit calculated with an Acute Zone of Initial Dilution (ZID) to be equal to 100.%. #### Effluent Limitation for Total Residual Chlorine based upon Water Quality Standards In-stream criteria of downstream segments for Total Residual Chlorine will be met with an effluent limitation as follows: | Sea | son | Concentra | ation | | Loa | d | |--------|-------------------|-----------|-------|----|------|---------| | Summer | 4 Day Avg Chronic | 0.011 | mg/l | | 0.46 | lbs/day | | | 1 Hour Avg Acute | 0.019 | mg/l | | 0.79 | lbs/day | | Fall | 4 Day Avg Chronic | 0.011 | mg/l | | 0.46 | lbs/day | | | 1 Hour Avg Acute | 0.019 | mg/l | | 0.79 | lbs/day | | Winter | 4 Day Avg Chronic | 0.011 | mg/l | | 0.46 | lbs/day | | | 1 Hour Avg Acute | 0.019 | mg/l | | 0.79 | lbs/day | | Spring | 4 Day Avg Chronic | 0.011 | mg/l | F. | 0.00 | lbs/day | | | 1 Hour Avg Acute | 0.019 | mg/l | | 0.00 | lbs/day | Effluent Limitations for Total Dissolved Solids based upon Water Quality Standards | Sea | son | Concentra | ation | Load | İ | |------------------------------------|---|--------------------------------------|------------------------------|----------------------------------|--| | Summer
Fall
Winter
Spring | Maximum, Acute
Maximum, Acute
Maximum, Acute
4 Day Avg Chronic | 1200.1
1200.1
1200.1
1200.1 | mg/l
mg/l
mg/l
mg/l | 25.02
25.02
25.02
25.02 | tons/day
tons/day
tons/day
tons/day | | Colorado Salinity Form Limits | | Determine | d by Permit | tting Section | | # Effluent Limitations for Total Recoverable Metals based upon Water Quality Standards In-stream criteria of downstream segments for Dissolved Metals will be met with an effluent limitation as follows (based upon a hardness of 300 mg/l): | | | 4 Day Average | | 1 Hour | Average | | |--------------|--------|---------------|-------------|---------------|---------|---------------| | | Concer | • - | Load | Concentration | l | Load | | Aluminum | N/A | | N/A | 750.0 | ug/l | 31.3 lbs/day | | Arsenic | 190.02 | ug/l | 5.1 lbs/day | 340.0 | ug/l | 14.2 lbs/day | | Cadmium | 0.61 | _ | 0.0 lbs/day | 6.5 | ug/l | 0.3 lbs/day | | Chromium III | 211.94 | • | 5.7 lbs/day | 4,433.7 | ug/l | 184.8 lbs/day | | Chromium VI | | ug/l | 0.3 lbs/day | 16.0 | ug/l | 0.7 lbs/day | | Copper | 23.86 | - | 0.6 lbs/day | 39.4 | ug/l | 1.6 lbs/day | | Iron | N/A | 3 | N/A | 1,000.0 | ug/l | 41.7 lbs/day | | Lead | 12.88 | ua/l | 0.3 lbs/day | 330.6 | ug/l | 13.8 lbs/day | | Mercury | | ug/l | 0.0 lbs/day | 2.4 | ug/l | 0.1 lbs/day | | Nickel | 132.15 | • | 3.6 lbs/day | 1,188.4 | ug/l | 49.5 lbs/day | | Selenium | 4.60 | - | 0.1 lbs/day | 20.0 | ug/l | 0.8 lbs/day | | Silver | N/A | _ | N/A lbs/day | 25.0 | ug/l | 1.0 lbs/day | | Zinc | 303.97 | _ | 8.2 lbs/day | | e ug/l | 12.7 lbs/day | | Cyanide | 5.20 | ug/l | 0.1 lbs/day | 22.0 | ug/l | 0.9 lbs/day | ## Effluent Limitations for Heat/Temperature based upon Water Quality Standards | Summer | 22.0 Deg. C. | 71.6 Deg. F | |--------|--------------|-------------| | Fall | 14.0 Deg. C. | 57.2 Deg. F | | Winter | 6.0 Deg. C. | 42.8 Deg. F | | Spring | 14.0 Deg. C. | 57.2 Deg. F | ## Effluent Limitations for Organics [Pesticides] Based upon Water Quality Standards In-stream criteria of downstream segments for Organics [Pesticides] will be met with an effluent limit as follows: | | 4 Day Average | | 1 Hour Average | | | |-------------------|---------------|------------------|----------------|------|------------------| | | Concentration | Load | Concentration | | Load | | Aldrin | | | 1.5E+00 | ug/l | 9.67E-02 lbs/day | | Chlordane | 4.30E-03 ug/l | 1.79E-01 lbs/day | 1.2E+00 | ug/l | 7.74E-02 lbs/day | | DDT, DDE | 1.00E-03 ug/l | 4.17E-02 lbs/day | 5.5E-01 | ug/l | 3.55E-02 lbs/day | | Dieldrin | 1.90E-03 ug/l | 7.92E-02 lbs/day | 1.3E+00 | ug/l | 8.06E-02 lbs/day | | Endosulfan | 5.60E-02 ug/l | 2.33E+00 lbs/day | 1.1E-01 | ug/l | 7.09E-03 lbs/day | | Endrin | 2.30E-03 ug/l | 9.59E-02 lbs/day | 9.0E-02 | ug/l | 5.80E-03 lbs/day | | Guthion | 0.00E+00 ug/l | 0.00E+00 lbs/day | 1.0E-02 | ug/l | 6.45E-04 lbs/day | | Heptachlor | 3.80E-03 ug/l | 1.58E-01 lbs/day | 2.6E-01 | ug/l | 1.68E-02 lbs/day | | Lindane | 8.00E-02 ug/l | 3.34E+00 lbs/day | 1.0E+00 | ug/l | 6.45E-02 lbs/day | | Methoxychlor | 0.00E+00 ug/l | 0.00E+00 lbs/day | 3.0E-02 | ug/l | 1.93E-03 lbs/day | | Mirex | 0.00E+00 ug/l | 0.00E+00 lbs/day | 1.0E-02 | ug/l | 6.45E-04 lbs/day | | Parathion | 0.00E+00 ug/l | 0.00E+00 lbs/day | 4.0E-02 | ug/l | 2.58E-03 lbs/day | | PCB's | 1.40E-02 ug/l | 5.84E-01 lbs/day | 2.0E+00 | ug/l | 1.29E-01 lbs/day | | Pentachlorophenol | 1.30E+01 ug/l | 5.42E+02 lbs/day | 2.0E+01 | ug/l | 1.29E+00 lbs/day | | Toxephene | 2.00E-04 ug/l | 8.34E-03 lbs/day | 7.3E-01 | ug/l | 4.71E-02 lbs/day | ### Effluent Targets for Pollution Indicators Based upon Water Quality Standards In-stream criteria of downstream segments for Pollution Indicators would be met by achieving the following effluent targets | | 1 Hour Average | | | |------------------------|----------------|----------------|--| | | Concentration | Loading | | | Gross Beta (pCi/I) | 50.0 pCi/L | | | | BOD (mg/l) | 5.0 mg/l | 208.5 lbs/day | | | Nitrates as N | 4.0 mg/l | 166.8 lbs/day | | | Total Phosphorus as P | 0.05 mg/l | 2.1 lbs/day | | | Total Suspended Solids | 90.0 mg/l | 3752.2 lbs/day | | Note: Pollution indicator targets are for information purposes only. ## Effluent Limitations for Protection of Human Health [Toxics Rule] Based upon Water Quality Standards (Most stringent of 1C or 3A & 3B as appropriate.) In-stream criteria of downstream segments for Protection of Human Health [Toxics] will be met with an effluent limit as follows: | | Maximum Concentration | | | | |----------------|-----------------------|------------------|--|--| | | Concentration | Load | | | | Toxic Organics | :4 | | | | | Acenaphthene | 1.20E+03 ug/l | 5.00E+01 lbs/day | | | | Acrolein | 3.20E+02 ug/l | 1.33E+01 lbs/day | | | | Acrylonitrile | 5.90E-02 ug/l | 2.46E-03 lbs/day | | | | Benzene | 1.20E+00 ug/l | 5.00E-02 lbs/day | | | | Benzidine | ug/l | lbs/day | | | | Carbon tetrachloride | 2.50E-01 ug/l | 1.04E-02 lbs/day | |------------------------------|--------------------------------|--------------------------------------| | Chlorobenzene | 6.80E+02 ug/l | 2.84E+01 lbs/day | | 1,2,4-Trichlorobenzene | _ | | | Hexachlorobenzene | 7.50E-04 ug/l | 3.13E-05 lbs/day | | 1,2-Dichloroethane | 3.80E-01 ug/l | 1.58E-02 lbs/day | | 1,1,1-Trichloroethane | • | - | | Hexachloroethane | 1.90E+00 ug/l | 7.92E-02 lbs/day | | 1,1-Dichloroethane | | | | 1,1,2-Trichloroethane | 6.10E-01 ug/l | 2.54E-02 lbs/day | | 1,1,2,2-Tetrachloroethane | 1.70E-01 ug/l | 7.09E-03 lbs/day | | Chloroethane | | | | Bis(2-chloroethyl) ether | 3.10E-02 ug/l | 1.29E-03 lbs/day | | 2-Chloroethyl vinyl ether | | | | 2-Chloronaphthalene | 1.70E+03 ug/l | 7.09E+01 lbs/day | | 2,4,6-Trichlorophenol | 2.10E+00 ug/l | 8.76E-02 lbs/day | | p-Chloro-m-cresol | | | | Chloroform (HM) | 5.70E+00 ug/l | 2.38E-01 lbs/day | | 2-Chlorophenol | 1.20E+02 ug/l | 5.00E+00 lbs/day | | 1,2-Dichlorobenzene | 2.70E+03 ug/l | 1.13E+02 lbs/day | | 1,3-Dichlorobenzene | 4.00E+02 ug/l | 1.67E+01 lbs/day | | 1,4-Dichlorobenzene | 4.00E+02 ug/l | 1.67E+01 lbs/day | | 3,3'-Dichlorobenzidine | 4.00E-02 ug/l | 1.67E-03 lbs/day | | 1,1-Dichloroethylene | 5.70E-02 ug/l | 2.38E-03 lbs/day | | 1,2-trans-Dichloroethylene1 | 3 | | | 2,4-Dichlorophenol | 9.30E+01 ug/l | 3.88E+00 lbs/day | | 1,2-Dichloropropane | 5.20E-01 ug/l | 2.17E-02 lbs/day | | 1,3-Dichloropropylene | 1.00E+01 ug/l | 4.17E-01 lbs/day | | 2,4-Dimethylphenol | 5.40E+02 ug/l | 2.25E+01 lbs/day | | 2,4-Dinitrotoluene | 1.10E-01 ug/l | 4.59E-03 lbs/day | | 2,6-Dinitrotoluene | | | | 1,2-Diphenylhydrazine | 4.00E-02 ug/l | 1.67E-03 lbs/day | | Ethylbenzene | 3.10E+03 ug/l | 1.29E+02 lbs/day | | Fluoranthene | 3.00E+02 ug/l | 1.25E+01 lbs/day | | 4-Chlorophenyl phenyl ether | | | | 4-Bromophenyl phenyl ether | 4 405 .00 | E 0.4E . 0.4 II /-I | | Bis(2-chloroisopropyl) ether | 1.40E+03 ug/l | 5.84E+01 lbs/day | | Bis(2-chloroethoxy) methane | 4.705.00 | 4.005.04 5-4-00 | | Methylene chloride (HM) | 4.70E+00 ug/l | 1.96E-01 lbs/day | | Methyl chloride (HM) | | | | Methyl bromide (HM) | 4.005.00 | 4 70F 04 lba/day | | Bromoform (HM) | 4.30E+00 ug/l | 1.79E-01 lbs/day
1.13E-02 lbs/day | | Dichlorobromomethane(HM) | 2.70E-01 ug/l
4.10E-01 ug/l | 1.71E-02 lbs/day | | Chlorodibromomethane (HM) | 2.40E+02 ug/l | 1.00E+01 lbs/day | | Hexachlorocyclopentadiene | 8.40E+00 ug/l | 3.50E-01 lbs/day | | Isophorone
Naphthalene | U.TULTUU Ug/I | J.JUL-UT IDS/Udy | | Naphthalene
Nitrobenzene | 1.70E+01 ug/l | 7.09E-01 lbs/day | | 2-Nitrophenol | 1.70E-01 ug/l | 7.00E-01 100/day | | 4-Nitrophenol | | | | 2,4-Dinitrophenol | 7.00E+01 ug/l | 2.92E+00 lbs/day | | 4,6-Dinitro-o-cresol | 1.30E+01 ug/l | 5.42E-01 lbs/day | | 7,0-0111110-0-016301 | 1.00E-01 agri | 0 0 1 100rddy | | N-Nitrosodimethylamine N-Nitrosodiphenylamine N-Nitrosodi-n-propylamine Pentachlorophenol Phenol Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate Di-n-butyl phthalate Di-n-octyl phthlate | 6.90E-04 ug/l
5.00E+00 ug/l
5.00E-03 ug/l
2.80E-01 ug/l
2.10E+04 ug/l
1.80E+00 ug/l
3.00E+03 ug/l
2.70E+03 ug/l | 2.88E-05 lbs/day
2.08E-01 lbs/day
2.08E-04 lbs/day
1.17E-02 lbs/day
8.76E+02 lbs/day
7.51E-02 lbs/day
1.25E+02 lbs/day
1.13E+02 lbs/day | |---|---|--| | Diethyl phthalate Dimethyl phthalate Benzo(a)anthracene (PAH) Benzo(a)pyrene (PAH) Benzo(b)fluoranthene (PAH) Benzo(k)fluoranthene (PAH) Chrysene (PAH) Acenaphthylene (PAH) Anthracene (PAH) | 2.30E+04 ug/l
3.13E+05 ug/l
2.80E-03 ug/l
2.80E-03 ug/l
2.80E-03 ug/l
2.80E-03 ug/l
2.80E-03 ug/l | 9.59E+02 lbs/day
1.31E+04 lbs/day
1.17E-04 lbs/day
1.17E-04 lbs/day
1.17E-04 lbs/day
1.17E-04 lbs/day
1.17E-04 lbs/day | | Dibenzo(a,h)anthracene (PAH)
Indeno(1,2,3-cd)pyrene (PAH)
Pyrene (PAH)
Tetrachloroethylene
Toluene
Trichloroethylene
Vinyl chloride | 2.80E-03 ug/l
2.80E 03 ug/l
9.60E+02 ug/l
8.00E-01 ug/l
6.80E+03 ug/l
2.70E+00 ug/l
2.00E+00 ug/l | 1.17E-04 lbs/day
1.17E 04 lbs/day
4.00E+01 lbs/day
3.34E-02 lbs/day
2.84E+02 lbs/day
1.13E-01 lbs/day
8.34E-02 lbs/day | | Pesticides Aldrin Dieldrin Chlordane 4,4'-DDT 4,4'-DDE 4,4'-DDD alpha-Endosulfan beta-Endosulfan Endosulfan sulfate Endrin Endrin aldehyde Heptachlor Heptachlor epoxide | 1.30E-04 ug/l
1.40E-04 ug/l
5.70E-04 ug/l
5.90E-04 ug/l
5.90E-04 ug/l
8.30E-04 ug/l
9.30E-01 ug/l
9.30E-01 ug/l
7.60E-01 ug/l
7.60E-01 ug/l
2.10E-04 ug/l | 5.42E-06 lbs/day
5.84E-06 lbs/day
2.38E-05 lbs/day
2.46E-05 lbs/day
2.46E-05 lbs/day
3.46E-05 lbs/day
3.88E-02 lbs/day
3.88E-02 lbs/day
3.17E-02 lbs/day
3.17E-02 lbs/day
8.76E-06 lbs/day | | PCB's PCB 1242 (Arochlor 1242) PCB-1254 (Arochlor 1254) PCB-1221 (Arochlor 1221) PCB-1232 (Arochlor 1232) PCB-1248 (Arochlor 1248) PCB-1260 (Arochlor 1260) PCB-1016 (Arochlor 1016) | 4.40E-05 ug/l
4.40E-05 ug/l
4.40E-05 ug/l
4.40E-05 ug/l
4.40E-05 ug/l
4.40E-05 ug/l | 1.83E-06 lbs/day
1.83E-06 lbs/day
1.83E-06 lbs/day
1.83E-06 lbs/day
1.83E-06 lbs/day
1.83E-06 lbs/day | #### Pesticide | Toxaphene | 7.30E-04 ug/l | 3.04E-05 lbs/day | |--|---|--| | Metals Antimony Arsenic Asbestos Beryllium | 14.00 ug/l
50.01 ug/l
7.00E+06 ug/l | 0.58 lbs/day
2.08 lbs/day
2.92E+05 lbs/day | | Cadmium
Chromium (III) | | | | Chromium (VI) Copper | 1300.17 ug/l
700.09 ug/l | 54.21 lbs/day
29.19 lbs/day | | Cyanide
Lead
Mercury | 0.00
0.14 ug/l | 0.00
0.01 lbs/day | | Nickel Selenium | 610.08 ug/l
0.00 | 25.44 lbs/day
0.00 | | Silver
Thallium
Zinc | 0.00
1.70 ug/l | 0.00
0.07 lbs/day | | Dioxin
Dioxin (2,3,7,8-TCDD) | 1.30E-08 ug/l | 5.42E-10 lbs/day | ### Metals Effluent Limitations for Protection of All Beneficial Uses Based upon Water Quality Standards and Toxics Rule | , | Class 4
Acute
Agricultur
al
ug/l | Class 3 Acute Aquatic Wildlife ug/l | Toxics Drinking Water Source ug/l | Acute
Toxics
Wildlife
ug/l | 1C Acute
Health
Criteria
ug/l | Acute
Most
Stringent
ug/l
750.0 | Class 3
Chronic
Aquatic
Wildlife
ug/l
N/A | |--|--|-------------------------------------|-----------------------------------|-------------------------------------|--|---|--| | Aluminum | | 750.0 | 14.0 | 4300.6 | | 14.0 | IV/A | | Antimony
Arsenic
Barium
Beryllium | 100.0 | 340.0 | 50.0 | 4300.0 | 0.0
1000.1 | 50.0
1000.1
0.0 | 190.0 | | Cadmium | | 6.5 | | | 0.0 | 6.5 | 0.6 | | Chromium (III) | | 4433.7 | | | 0.0 | 4433.7 | 211.9 | | Chromium (VI) | | 16.0 | | | 0.0 | 16.00 | 11.00 | | Copper | 200.0 | 39.4 | 1300.2 | | | 39.4 | 23.9 | | Cyanide
Iron | | 22.0
1000.0 | 220028.4 | | | 22.0
1000.0 | 5.2 | | Lead | 100.0 | 330.6 | | | 0.0 | 100.0 | 12.9 | | Mercury | | 2.40 | 0.1 | 0.15 | 0.0 | 0.14 | 0.012 | | Nickel | | 1188.4 | 610.1 | 4600.6 | | 610.1 | 132.1 | | Selenium
Silver | | 20.0
25.0 | | | 0.0
0.0 | 20.0
25.0 | 4.6 | | Thallium | | | 1.7 | 6.3 | 1.7 | | |----------|-------|-------|-----|-----|-------|-------| | Zinc | | 303.9 | | | 303.9 | 304.0 | | Boron | 750.1 | | | | 750.1 | | #### Summary Effluent Limitations for Metals [Wasteload Allocation, TMDL] [If Acute is more stringent than Chronic, then the Chronic takes on the Acute value.] | | WLA Acute | WLA Chron | ic | |----------------|-------------------|-----------|----------------| | | ug/i | ug/l | | | Aluminum | 750.0 | N/A | | | Antimony | 14.00 | | | | Arsenic | 50.0 | 190.0 | Acute Controls | | Asbestos | 7.00 E+0 6 | | | | Barium | | | | | Beryllium | | | | | Cadmium | 6.5 | 0.6 | | | Chromium (III) | 4433.7 | 212 | | | Chromium (VI) | 16.0 | 11.0 | | | Copper | 39.4 | 23.9 | | | Cyanide | 22.0 | 5.2 | | | Iron | 1000.0 | | | | Lead | 100.0 | 12.9 | | | Mercury | 0.140 | 0.012 | | | Nickel | 610.1 | 132 | | | Selenium | 20.0 | 4.6 | | | Silver | - 25.0 | - N/A | | | Thallium | 1.7 | | | | Zinc | 303.9 | 304.0 | Acute Controls | | Boron | 750.10 | | | Other Effluent Limitations are based upon R317-1. E. coli 126.0 organisms per 100 ml #### X. Antidegradation Considerations The Utah Antidegradation Policy allows for degradation of existing quality where it is determined that such lowering of water quality is necessary to accommodate important economic or social development in the area in which the waters are protected [R317-2-3]. It has been determined that certain chemical parameters introduced by this discharge will cause an increase of the concentration of said parameters in the receiving waters. Under no conditions will the increase in concentration be allowed to interfere with existing instream water uses. The antidegradation rules and procedures allow for modification of effluent limits less than those based strictly upon mass balance equations utilizing 100% of the assimilative capacity of the receiving water. Additional factors include considerations for "Blue-ribbon" fisheries, special recreational areas, threatened and endangered species, and drinking water sources. An Antidegradation Level I Review was conducted on this discharge and its effect on the receiving water. Based upon that review, it has been determined that an **Antidegradation Level II Review is Required** #### XI. Colorado River Salinity Forum Considerations Discharges in the Colorado River Basin are required to have their discharge at a TDS loading of less than 1.00 tons/day unless certain exemptions apply. Refer to the Forum's Guidelines for additional information allowing for an exceedence of this value. #### XII. Summary Comments The mathematical modeling and best professional judgement indicate that violations of receiving water beneficial uses with their associated water quality standards, including important downstream segments, will not occur for the evaluated parameters of concern as discussed above if the effluent limitations indicated above are met. #### XIII. Notice of UPDES Requirement This Addendum to the Statement of Basis does not authorize any entity or party to discharge to the waters of the State of Utah. That authority is granted through a UPDES permit issued by the Utah Division of Water Quality. The numbers presented here may be changed as a function of other factors. Dischargers are strongly urged to contact the Permits Section for further information. Permit writers may utilize other information to adjust these limits and/or to determine other limits based upon best available technology and other considerations provided that the values in this wasteload analysis [TMDL] are not compromised. #### XIV. Special Considerations - TMDL A Total Maximum Daily Load (TMDL) for the San Rafael River was completed as part of the West Colorado River Wastershed was completed in August of 2004. Huntington Creek, and tributaries (including Deer Creek) from the Highway 10 crossing to USFS boundary is 303(d) listed as impaired for total dissolved solids. As part of the TMDL, site specific standards were developed for a number of stream segments in the watershed. The TMDL recommended that the segment of Huntington and tributaries from Hwy 10 upstream to the USFS Boundary be kept at the current state TDS standard of 1,200 mg/l. Although the wasteload analysis may indicate a higher allowable TDS concentration than 1,200 mg/l for this facility, a 1,200 mg/l TDS permit limit is recommended to protect downstream water uses. The approved TMDL did not identify a load or concentration reduction for the Deer Creek Mine facility. Prepared by: David Wham Utah Division of Water Quality 801-538-6052 File Name: Deer Creek Huntington WLA_11-8-12 #### **APPENDIX - Coefficients and Other Model Information** | CBOD | CBOD | CBOD | REAER. | REAER. | REAER. | NBOD | NBOD | |--------|--------|--------|--------|--------|--------|--------|--------| | Coeff. | (Kd)20 | FORCED | (Ka)T | (Ka)20 | FORCED | (Ka)T | (Kn)20 | (Kn)T | |---|---|---|--------------------------------|---|------------------------------------|--|------------------------------------| | 1/day | (Kd)/day | 1/day | (Ka)/day | 1/day | 1/day | 1/day | 1/day | | 2.000 | 0.000 | 0.806 | 3060.102 | 0.000 | 1913.360 | 0.400 | 0.087 | | Open
Coeff.
(K4)20
1/day
0.000 | Open
Coeff.
(K4)T
1/day
0.000 | NH3
LOSS
(K5)20
1/day
4.000 | NH3
(K5)T
1/day
1.611 | NO2+NO3
LOSS
(K6)20
1/day
0.000 | NO2+NO3
(K6)T
1/day
0.000 | TRC
Decay
K(CI)20
1/day
32.000 | TRC
K(CI)(T)
1/day
10.095 | | BENTHIC
DEMAND
(SOD)20
gm/m2/day (| BENTHIC
DEMAND
(SOD)T
gm/m2/day
0.287 | | | | | * | | | K1 | K2 | K3 | K4 | K5 | K6 | K(CI) | S | | CBOD | Reaer. | NH3 | Open | NH3 Loss | NO2+3 | TRC | Benthic | | {theta} | 1.0 | 1.0 | 1.1 | 1.0 | 1.0 | 1.0 | 1.1 | 1.1 |